Nortech Radio Comms » February 2017

Monthly Archives: February 2017

Uncategorized

I Bought a Two-Way Radio With a Range of 25 Miles…Why Won’t It Work?

Published by:

Sorry, but you’ve been had. Although many manufacturers boast that their radios can reach amazing distances, this is, in almost every instance we’ve encountered, a fallacy.

How is this legal, you may ask?

Essentially, your radio quite probably could work over a range of 25 miles, but that is a theoretical estimate, working on the assumption that the myriad variables that affect two-way radio signal (such as atmospheric conditions, topography, objects in the way and etc) are simply not in effect.

All of them. At the exact same time.

So, assuming that you used your two-way radio in a vacuum, where weather didn’t exist and no obstacles, man-made or otherwise, were present, you would be able to communicate with someone else who was further away in that impossible vacuum, maybe even 25 miles away, but otherwise? Forget it.

The fact is that the average two-way radio has a range of between one and two miles and not much more (maybe three, but we’re not making any promises). CB radio fares significantly better, largely because it makes use of large aerials. Now, Signal-boosting equipment can be used to improve your two-way’s performance (for example, repeaters), but such equipment is expensive and hard to obtain for legal reasons.

There are, however, a few factors that can have an affect on your radio’s range. The frequency being used, the power output, the size of the antenna, the complexity of the signal being sent, signal interference, background noise and (as we wrote earlier) objects in the way are all factors that can improve (or hamper) your efforts to get your signal to reach as far as possible.

So, talking on your radio whilst in the car will have a deleterious affect on your signal, as will deliberately walking through wooded areas or places with a lot of rocks/mountains if you can take an easier path.

However, a larger antenna (if you’re tech orientated, the antenna can be replaced with a better one – although this should only be attempted if you are

 

    1. a) Sure about licensing laws

 

And

 

    1. b) Tech savvy enough to void the warranty and not regret it later, can really add a few hundred meters to a radio’s range, as can a switch in frequencies.

 

Also, your choice of VHF or UHF radio will have an affect as well, a UHF signal, for example, generally penetrates buildings and objects better than a VHF signal, whereas VHF is better for outdoor use where there is a lot of open space to transmit across.

Having said/written that, even in optimum conditions, you are extremely unlikely to transmit over a distance of 25 miles. Sorry.

As an aside, mobile phones don’t suffer from this lack of coverage, largely because cell towers are in place that bounce the signal from one to the other and thus carry it across a far larger area, your mobile is still your best bet to break that 25 mile mark, we’re afraid.

If you really must use radio communications over long distances, we recommend going to the Website 2wayradionline

Hope that helps.

Uncategorized

The arrival of 5G, cognitive radio and the future of connectivity

Published by:

We are very excited about 5G, we have already reported on how the UK emergency services are moving over to a LTE network, and inevitably 5G is the next step for better, faster and more capable communications.  Not planned to be deployed until the next decade, we believe that 5G will allow us to communicate better with our Walkie talkies. The original article can be found here.

With faster and more reliable connections, we look at what the next generation of communications could mean for business

From smart cities to the internet of things (IoT), virtually every aspect of the modern world is becoming closely connected.

The extent to which we rely on our devices and the exchange of information means new systems are needed that not only handle far greater bandwidth, but that are capable of being deployed to cover areas that were previously unreachable.

The potential benefits for business are huge, with faster and more reliable connectivity not only enhancing how firms interact with customers and each other, but also lending itself to greater flexible working among staff.

The arrival of 5G

One development that many industry observers believe could be revolutionary is 5G. Following on from 4G, the fifth-generation mobile network is in its early stages of development and is expected to be rolled out between 2020–25.

Any tech that contributes towards the next phase of mobile connectivity is covered by the term 5G. And although there are still no set standards or specifications, the GSMA – a trade body that represents global mobile operators – has outlined eight key criteria, stipulating minimum requirements for speed, capacity and energy in order for something to be considered 5G.

According to Ofcom, once operational 5G could provide between 10–50 Gbps (gigabit per seconds) in download speeds (as compared to the 5–12 Gbps of 4G), and although most experts expect it to be at the lower end of the range, that would still mean you could download an HD movie in seconds.

But rather than simply being faster than the current 4G, it will also allow more devices to access the web – an essential requirement if the IoT is to take off – meaning it could be transformative for business.

Raj Sivalingam, executive director of telecoms for techUK, the trade association for the tech sector, says: “The potential of the IoT, particularly in the enterprise environment, has been hugely debated but its impact is almost certainly still undervalued.

“Mass deployment across sectors will boost efficiency and safety with pre-emptive fault correction; enable automatic reporting of accidents and allow real-time asset tracking, reducing crime and increasing productivity, to name just a few benefits.”

One potential bottleneck for 5G is spectrum availability – or lack of it. Radio frequencies for both 3G and 4G are already overcrowded. The provision of a new bandwidth will require widespread cooperation between operators, manufacturers and governments.

Infrastructure is also an issue, says Sivalingam. “Making the leap to 5G mobile services and getting more fibre into the fixed telecommunications networks will require substantial amounts of investment.

“We need the government and industry stakeholders to work to shift the UK from good levels of connectivity to great levels so that we continue to attract investors and startups, and to foster innovation from within the UK.”

Cognitive radio

One possible solution is cognitive radio. An adaptive radio and network technology, it can sense and respond to its operating environment and automatically tune itself to the best available frequencies, this makes it more reliable in extreme locations where signals are weak, potentially providing dependable, robust connections that are not hampered by interference or geography.

Finland-based KNL Networks has developed a system using the technology that uses short wave radio to transmit internet access to sites in remote locations ranging from oil rigs to polar research stations. KNL Networks CEO Toni Linden says: “We can provide similar connectivity to those from satellites but with a terrestrial radio system. Our radios receive the whole spectrum all the time, so rather than scanning, real-time broadband receiving is going on. Thus we can see and measure everything that’s going on in the spectrum and we can maintain the network connectivity that way.”

The tech opens up the possibility of providing seamless connectivity anywhere, giving business reliable online access to markets in parts of the world that have otherwise been unreachable. It could also enable media and other companies to broadcast without the need for expensive satellites.

Quantum key distribution

It’s not just data transmission, speeds and connectivity that pose challenges in the future, but the safety of that data too. Cybercrime is ranked alongside terrorism as among the most serious threats to the UK [pdf], and with data now the lifeblood of modern business, securing that data is of paramount concern. One technology that could provide the answer is quantum communications.

Conventional encryption relies on sending a decryption key alongside your secret data. The receiver then uses that key to decode your secret information. But problems arise because hackers can also copy this key and steal your data.

Quantum key distribution (QKD) is different because it encodes this key on light particles called photons, and an underlying principle of quantum mechanics means that a hacker trying to read or copy such a key would automatically alter its state, effectively leaving a hacker fingerprint so the sender and receiver know their information security had been breached.

China recently launched a quantum satellite to further research into this technology, with the hope of developing an uncrackable communications network.

In the UK, the Quantum Communications Hub is part of a national network of four hubs led by the universities of Birmingham, Glasgow, Oxford and York. Director Tim Spiller says: “We are developing quantum communications technologies along a number of different directions, notably short-range free space QKD, where the transmitter could be in future mobile phones, and chip-to-chip QKD through optical fibre, where the chips could be in future computers and other devices.”

With two thirds of British business falling victim to cybercrime in the past year the need for better encryption is clear.

Several companies currently offer commercial quantum key distribution systems include ID Quantique, MagiQ Technologies, QuintessenceLabs, SeQureNet and Toshiba, although its high cost and limited range means mainly banks and governments are its main users, with mainstream adoption still some way off.

Spiller added: “Certainly it would be desirable to improve the size, weight, power and cost points of current technologies and our work in the hub and elsewhere is addressing all these factors.”

Paul Lee, head of technology, media, and telecommunications research at Deloitte, highlighted a number of improvements which he expected to see coming down the line, including improved mobile antennae and base stations, as well as improvements to fixed networks such as G.fast that would enable copper cable to operate at much higher speeds.

“As they get steadily faster, new services emerge to exploit these greater speeds, which then requires the deployment of even faster networks. This tail chasing has been going on for decades and won’t stop in 2017.”

Uncategorized

Here Are Our 7 Best Headsets You Can Use At Your Venue

Published by:

There are many instances where people get confused when talking about types of headsets and the associated equipment. In this article, we are going to help you get a clear understanding of the different types of headsets and the associated equipment. With that said, it is important to note that the names that have been given below, are the actual names that need to be used. Without any further ado, lets get started;

In Ear Monitors

Also known as in-ear (or canal) headphones, these devices sit inside the user’s ear canal, and they deliver great sound quality; they ensure a controlled and precise sound. They also fill the ear’s entrance, thus are very effective at sealing out any unwanted external noise. These devices include a transmitter which is controlled by an audio engineer which then transmits to the belt-pack on the user. The in ear monitors allow freedom of movement and are commonly used by modern pop artists. They’re very small and allow them to comfortably hear the rest of the band, and also themselves (this is what’s known as monitoring or foldback). Apart from artists, these devices are commonly used by audio engineers to hear the mix of the vocals and the stage instrumentation for recording studio mixing and/or live performance.

Two Way Radio Headsets

Two way radio headset is a communication device which can transmit and also receive signals. A two way radio headset allows the user to communicate with other people with similar Two way radio headsets (and are operating on the same channel or radio frequency). Two way radio headsets are readily available in mobile and also hand held portable configurations. The handheld 2 way radio headsets are also known as walkie talkie headsets or handie talkies. One thing to note about two way radio headsets, is that the user can either transmit or receive signals and not both at the same time.

2 Way Radio Covert Pieces

These are quite similar to the Two way radios, however, they are much more discreet. 2 way radio covert earpieces are usually used by security personnel as they prefer staying discreet. This type of walkie talkie headset is also ideal for the Door supervisors and security staff.

Wired Show Comms

Unlike 2 way radios, these type of communication systems allow for both talking and listening even at the same time. These devices have a closed cup design, meaning they fully cover the ear which helps reduce the ambient noise. Wired show comms come in single muff and double muff versions. They get attached to the belt pack controller which is then physically wired to the system. Because of the cabling that’s involved in wired show comms, there’s less mobility thus are best suited for managers and the static technicians. These specialist communication devices are also commonly used for calling shows.

Wireless Show Comms

These are very similar to the wired Show Comms, only difference is that their belt packs are wireless. The device and the belt pack are compatible which means that the users can freely and comfortably move around, thus are ideal for stage managers, front of house managers, among others. Just like the wired show comms, these devices also allow both talking and listening at the same. With that said, you should know that the wireless show comms are relatively more expensive than the wired show comms. Some of the other applications for these devices include, but not limited to; security personnel, broadcast, marines, theater, and colleges. They can also serve as convenient walkie talkie headset for events.

Radio Performer Headset

This is the device that’s used by presenters and performers. This device allows for the user’s voice to get fed into the sound system where the audience can get to hear them. This device is usually used in conjunction with the radio belt pack system. Most of the devices used today are generally very thin and skin colored which helps reduce visibility when the performer is on stage.

Presenter Talkback

These are the small ear pieces which you see the lead presenters on TV talk shows wearing. This device allows the producer (of that particular TV talkshow or program), to communicate to the lead presenter and update them on the show’s progress. This may be done using a system known as in ear monitoring. Alternatively, wireless show comms systems can also be used.